
 

 

  

 

  

1. Introduction 
The Boltzmann equation in its generalized form is a 

source of many creative ideas in applied physics [1]. It is 

novel instrument for theoretical and computation 

research in class of problems named physical kinetics. It 

is a balance equation for distribution function – a 

density of some sort particles in their phase space [2], 

[3]. Compared with hydrodynamical problems the space 

dimension for field arguments is not equal 3, but 6. Of 

course, it makes difficulties in computation of solution.  

 To avoid large dimension in use the Boltzmann 

equation for electron gas in plasma physics they used, 

together with local approach [3], [4], to apply so named 

the Lorentz two term approximation (LTTA) for 

electron distribution function (EDF) [4]: 

( ) ( ) ( ) .,10 vvfv =⋅+= vvvff
 

This approach leads to hydrodynamical drift and 

diffusion equations for electron gas component in 

plasma. As electron is very light, in many situations 

EDF is approximately isotropic. Present-day the A.V. 

Phelps JILA bases (and other bases) [5] – [7] of electron 

cross-sections and transport properties are calculated in 

this approximation for EDF. 

 However there exists a class of problems, in which 

LTTA is not sufficient. In rare systems, such as low 

pressure glow discharge and hollow cathode, EDF can 

be significantly nonlocal and anisotropic. Simplest  

                                                           
  

 

 

 

example is a problem about the wall absorbing 

electrons: what is EDF near this wall? 
 

2. Statement of the Problem 
 

Consider a problem:  
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It is a dimensionless kinetic equation for electrons 

having velocity 1=v  in 3D half-space 0>x  of ionized 

gas, molecules and ions of which having small velocity 

and large mass compared with electrons; θξ cos=  is a 

cosine of slope angle between direction of electron 

motion and x -axis; 0=x  is a wall. The equation 

includes an operator of low-angle scattering of electrons 

on gas molecules, the transport rate coefficient is equal 

to unit. To simplify situation the electric field assumed 

to be absent.
1
 The asymptotic (3) at large distance from 

the wall satisfies the kinetic equation (1), but does not 

satisfy the wall boundary condition (2), so the solution 

                                                           
1 This is possible nearby the anode wall in glow discharge, when a 

probability of ion recombination in the anode is rather small, ions mostly are 

reflected, but some electrons and ions neutralize each other. 
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of the problem has additional summands, which are to 

be found. Also the constant c in (3) is to be found. The 

problem has no parameters, so it is fundamental. 

 In some physical sense the problem is similar to so 

named the Milne problem [8]: to find a distribution 

function at the absorbing wall for particles, which are 

scattering in a law for elastic solid balls. In mathematics 

of the Milne problem a finite value of total scattering 

cross-section is significant. So the collision integral in 

kinetic equation can be presented as a sum of two terms: 

the input integral term – for particles, which get given 

velocity in result of scattering; and output term – for 

particles, which had  given velocity before scattering 

and change it after scattering. If the differential cross-

section does not depend on the angle of scattering, the 

Milne problem can be reduced to the Wiener and Hopf 

kind integral equation for a density of particles [9] with 

the Hopf kernel. Wiener and Hopf develop special 

method to solve this equation with use of analytical 

properties of the Fourier transformation of the equation 

and its solution. One can obtain analytic expression for 

solution of this problem and numerical values of its 

principal points (see Appendix at the end). 

 Application of the Milne problem is a propagation of 

light in muddy medium, and neutrons in solids and 

liquids. The electron scattering in plasma gives other 

type of collision term and needs other approach to solve 

problem, because total scattering cross-section for 

electrons is infinite. 

 

 

3. The Legendre Polynomial Expansion 
 

Let us find an approximation of solution in a form: 
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Substitution and use the Legendre polynomial properties 

leads to the equation system: 
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Boundary condition (2) in the wall gives 
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For structure (4) (equal number of even and odd 

polynomials) system (5) can be resolved with respect to 

derivatives: 

( )( )
( ) ( )

( )( ) ( )
( )( ) ( )( )

( ) ( )
( ) ( )

( ) ( )( )( )

( )
.,...,0,0

;,...,0,34

;1,...,1,,...,2

,
112...12

...1

3421

;,...,0,

.,...,1,1,...,0

,
12...3212

1...21

1421

;,...,0,114

;,...,0,

0

1

,

0

2
12

1

,

12
2

NmC

NmmmC

mkNm

kmm

kmmm

mC

NmfC
dx

df

mNkNm

kmmm

kmmm

mA

NmmmA

NmfA
dx

df

m

mm

kk

kmm

m

n

nmn
m

kk

kmm

mm

N

mn

nmn
m

==

=+−=

−==

+−−+
−−

×

×+−=

==

−=−=

−+++
++++

×

×+−=

=++−=

==

+
−

=

+

+
+

=
+

∑

∑

 

In a matrix form it has a view: 
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Here matrices A, C are triangle. Matrix M has real 

eigenvalues, the set of them has symmetry  regard to 

zero: .,...,2,1,0,0, 0 Nnnn =>=±= λλλλ   

Zero eigenvalue is double, others are ordinary. Jordan 

form of M has the Jordan cell 22×  for zero eigenvalue. 

So the solution of (8) is 
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With use of boundary condition (6) – (7), the vector p  

can be found as a solution of algebraic system 

( ) .
2

1
0bp =−′′ +− TTB                                                 (11) 

Here 0b  is first column in matrix B in (7), B′  is matrix 

B without first column, 
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In (12) “+” and “-” subscripts denote upper and lower 

half of a matrix, sign “´” denotes an exclusion of first 

row of a matrix. After calculation of the vector-column 
p  the solution can be found by substitution p  into (10), 

and ( )xf  into (4). 

4.  Results and discussion 

 If one uses N = 50 (102 Legendre polynomials), one 

can obtain a result shown on Fig. 1. The EDF is rather 

good quality, oscillating deviations from zero at positive 

values of ξ (directions inward plasma volume) are small 

enough to believe that the approximation of solution is 

good. Fig. 2 illustrates a density of electrons nearby the 

wall. In nearest points the density deflects from linear 

dependence upon x to more low value. 
 One can ask a question: why the Legendre 

polynomials are used here, if one can use the Fourier 

method of variable separation to find a basic solutions 

for operator in (1)? – Formally it could be right (and 

standard) way. But really the eigenfunctions in the 

Fourier approach is more difficult to calculate (see Fig. 

3) because of their complicated behavior especially for 

high modes. To calculate these modes in amount bigger 

then 10 with good accuracy – is not easy problem. But 

the Legendre polynomials are well defined: their 

coefficients are rational numbers, and formulas are well 

known. On Fig. 4 the maximal deviation of EDF on the 

wall from zero at positive ξ  is presented. One can see: 

the accuracy rises with a number of polynomials, though 

not very fast. Also the calculation time rises because of 

size of matrices. 

 
Fig. 1. The EDF nearby absorbing wall. 

 

 

 
Fig. 2. Electron density nearby the wall. 

 

 
Fig. 3. Eigenfunctions (modes) which appear in use of the Fourier 

method. 
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Fig. 4. The accuracy of the Legendre polynomial method versus 

number N. (Number of polynomials is 2(N+1)). 

 

 
Fig. 5. The sets of eigenvalues of matrix M (8) at different N.  

 

 
Fig. 6. The enlarged image of sets of eigenvalues of matrix M (8) at 

different N.   
 

Fig. 5 illustrates the sets of eigenvalues of matrix M (8) 

at different N. Every set is described with a polygonal 

line. The ordinate of vertex is an absolute number of 

eigenvalue of one of sets, the abscissa  is an order 

number of the eigenvalue. The envelope of all sets is a 

set of eigenvalues of the angle operator in the problem 

(1). Fig. 6 shows an enlarged image of sets of 

eigenvalues of matrix M (8) at different N. The vertexes 

of polygonal lines show the absolute numbers of 

eigenvalues. They are marked with circle points. 

 To prove with mathematical strictness that the method 

of finite Legendre polynomial expansion converges with 

increase of N – is not easy problem most probably. It is 

not difficult to prove identity of solution, if it exists (see 

the Appendix at the end). But to prove existence – is 

more difficult. These calculations enable to hope that a 

sequence of approximations converge to true solution. 

5.  Conclusion 

 The multi-term approximation, based on  finite 

Legendre polynomial expansion by cosine of slope angle 

to axis of system symmetry, enables to solve an 

anisotropic problem with accuracy much greater then 

traditional the Lorentz two term approximation for 

electron distribution function in physical kinetics of 

plasma. It worse to mention, that an infinite Legendre 

polynomial expansion of EDF is not creative, because 

the infinite ODE system of equations, analogues to (5), 

cannot be resolved with regard to the derivatives and 

leads to deadlock. 

APPENDIX 

1. Uniqueness of a solution.  

Theorem. If a solution of problem (1) – (3) exists, it is 

unique. 

The proof. If there exist two solutions of problem (1) – 

(3): ( ) ( )ξξ ,,, 21 xfxf , then function 

( ) ( ) ( )ξξξ ,,, 12 xfxfxh −=                                      (13) 

is a solution of the problem: 
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( ) ;0,0,0 >= ξξh                                                   (15) 
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 Let us multiply the equation (14) by ( )ξ,xh  and 

integrate over the variable ξ within -1, +1. After some 

transformations we get: 
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By virtue of (15) and (16) we have: 
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Thus, we have found, that the continuously 

differentiable function 

( ) ( )( ) ∞<≤= ∫
+

−

xxhdxH 0,,2

1

1

ξξξ                        (20) 

has non-positive value at 0=x , by virtue of (18). On 

the other hand, by virtue of (17), it does not increase 

with a growth of х , and tends to the limit equal to zero 

when х approaches infinity. All of this is possible only 

in case when 

( ) .0,0 ∞<≤= xxH                                               (21) 

Then from (15), (18) and (21) it follows 

( ) ;11,0,0 +<<−= ξξh                                        (22) 

Also from (17) and (21) we obtain 
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By substituting (23) into equation (14) we have 
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xx
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h
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From (22), (23) and (24), also taking into account a 

continuity of differentiable function h in the boundary 

0=x  of its domain of definition, also in the half-axis 

,0=ξ ∞<≤ x0 , it follows: 

( ) .0,11,0const, ∞<≤+≤≤−== xxh ξξ      (25) 

 Thus, a difference in any two solutions of the problem 

(1) – (3), if these solutions exist, is equal to zero. 

Therefore, a solution is unique. The theorem is proved. 

 

 

 2. The Milne problem and its solution. 

For a distribution function  

( )ϑcos,xff = ,                                                        (26) 

which is a density M in a six-dimensional phase space of 

spatial coordinates and velocities   
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let us write a stationary kinetic (or the Boltzmann) 

equation  
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Here 0const >== σω Nv  is an average rate of 

collisions. .0const >=v  The integral of elastic 

collisions  of solid balls with motionless random centers, 

having a concentration N, is written in the right-hand 

side of the equation. A collision cross-section is equal to 

. A differential cross-section of solid ball scattering 

does not depend on the angle of scattering, so scattering 

is identical for all directions.   Therefore  is both total 

and transport (or diffusional) cross-section. It is simplest 

mathematical variant of scattering. 

 All particles are absorbed with a wall at 0=x  and do 

not return to a half-space 0>x . Appropriate boundary 

condition is 

( ) .0cos,0cos,0 >= ϑϑf                                      (29)                                                                                             

Besides, the solution of (28) must satisfy a condition of 

non-negativity 

( ) 0,0cos, ≥≥= xxff ϑ                                      (30)                                                    

and a condition of constant flux density to the wall  

( ) .0constcos,0cossin

2

00

≤==∫∫ Jfvdd ϑϑϑϕϑ
ππ

 (31)                                   

Since at 0=J  all conditions of the problem (28) – (31) 

become linear homogeneous, the problem in this case 

has a unique trivial solution  ( ) 0cos, ≡ϑxf . Therefore 

further below we consider the constant of flux density J 

as strictly negative one. It is worse to mention that by 

virtue of (28) the integral (31) of flux density conserves 

its value at any 0≥x . 

 

 

 Dimensionless formulation of the problem. Dimension 

constants Jv ,,ω  there is just so many as it needs to 

present the problem in dimensionless form, which does 

not include any parameters. Let insert values 
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In these new values (omitting sign “ ' ”) we rewrite the 

problem in the form: 
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It is the Milne problem in its canonical form. 

 Solution. 

Introducing dimensionless particle density 
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one considers (33) as an ordinary differential equation 

on variable x: 
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One integrates it with use of a variation of constant 

method [10] and transforms into an integral equation. 

Most simple form is 
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Here n is meant as taken from (37). The form (39) 

satisfies automatically boundary condition (34) in the 

wall at x = 0 . 

 It is possible, however, instead of integral equation for 

two variable function ( )ξ,xf , to build an integral 

equation for one  variable function ( )xn . To do this, let 

us integrate (39) and (40) by variable ξ and substitute a 

sum of results into left-hand side of (37). After 

transformations of integration variables we get an 

equation: 
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Here a special function, the integral exponential 

function [11], is used: 
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Condition of distribution function non-negativity (35) 

gives a condition of non-negativity for ( )xn : 

( ) .0≥xn                                                                      (44) 

Condition for a flux density (36) gives a condition for 

normalization of ( )xn : 
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 The equation (42) is named the Milne equation [12] 

and has mathematical type of the Wiener-Hopf kind 

equation in the literature [13].  

 Wiener and Hopf developed special method for 

solving of linear integral equations, having a kernel, 

which depends on difference of its arguments, and when 

limits of integration are zero and infinity [14].  For the 

Milne problem it is possible to obtain an analytical 

expression for solution of the equation (42) under 

normalization (45): 
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Here complex normalization factor is chosen in such 

way, that a solution would be real and satisfy condition 

(45). Constants µβ , , which define positions of paths of 

integration in the complex plane, can be varied in limits 

defined – in such manner, that the paths would not cross 

singular points of integrands. According to the Cauchy 

theorem [14], such variation does not change a result.   

 However the formula (46) contains one exiting thing: 

if you merely write it in some mathematical package, the  

“Wolfram Mathematica 9.0” for example, and plot a 

picture of the solution, you would have something like 

Fig. 7. 

 To make correct calculations of two integrations in 

(46) – is a problem, which needs additional inventions 

and efforts. It seems, that more easy way is to use a 

finite element method (FEM) [15]. It is possible if you 

know asymptotic behavior of solution at ∞→x . In this 

way one can obtain a picture like Fig. 8. 

 
Fig. 7. Simple-minded calculation of formula (46) in 

“Wolfram  Mathematica 9.0”. 
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Fig. 8. Calculation of ( )xn  with the Galerkin finite 

element method. A number of elements is equal to 1000. 

Dotted line is an asymptotic behavior at large x. 

 

 

 
Fig. 9. Calculation of discrepancy of the equation () in 

use of the Galerkin method – at number of elements N = 

1000. 

 

 

The accuracy of the Galerkin finite element method is 

much better than attempts to use analytic formula (46) 

for calculations of ( )xn , – see Fig. 9, 10. One can see 

that at number of elements equal to 1000 the accuracy of 

the FEM is better than 0.001. This can satisfy most of 

wishes for physicists and experimentalists. 

 But the analytic (!) formula (46) gives (with good 

luck) something like the Fig. 11.  

 
Fig. 10. The discrepancy of the equation (42) in use of 

the Galerkin FEM method – as a function of a number of 

elements N . 

 

 

 

 

 

Fig. 11. The picture of ( )xn  dependence, calculated by 

the formula (46) in “Mathcad 2001” (red points), – after 

some successful transformation in variables of 

integration.  

 

 Nevertheless the Wiener-Hopf method gives good 

way to calculate the distribution function of particles in 

the wall: at 0=x . If we take the Fourier transformation 

term from (46) 

( )

( )
.10

,
arctg

1
1

ln
2

exp

1

2

1

2

2

2

<<





























−

+
−

−
×

×
−

=

∫
−∞+

−∞−

+

β

η
η

η
η

ηη
η

π

π
β

β

i

i
k

d

i

k

k

ik
kU

        (47) 

we can calculate ( )ξ,0f  by formula 
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The picture of this dependence is presented on Fig. 12. 

In comparison with Fig. 1 (red curve) one can see, that 

the Milne problem with solid balls (Fig. 12) gives a 

discontinuous dependence of f on cosine of slope angle 

– with a jump at a direction of particles parallel to the 

wall, – as far as slow-angle scattering gives a continuous 

dependence (Fig. 1). 

 
 

Fig. 12. Calculation ( )ξ,0f   with the Wiener-Hopf 

method. 

  

By integration (48) over cosine of slope angle one can 

obtain a value of density n in the wall: 

( ) ( ) 2...0.57735027 ,00

0

1

≈= ∫
−

ξξ fdn                      (50) 

 Formula (46) helps also to find an asymptotic 

behavior of density n at large values of x. If we extract a 

singular part of  (47) near the point 0=k  we can obtain 

( ) .
1

2

1
2 







 +
−

=+
k

C
i

k
kU s

π
                                        (51) 

The reverse Fourier transformation of (51) gives the 

asymptote for ( )xn  at ∞→x  

( )( ) ( ) .
2

1
CxekUdkxn ikxs

i

i

s +== −
+

++∞

+∞−
∫

µ

µπ
                 (52) 

Here C is the Hopf constant [16] 

( )
( )

.95987215..0.71044608

2

1
1C 

2

≈

≈
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−
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∞− βη
βη

η
π i

iq
d

                                  (53) 

( ) .
arctg

1
1

ln
2

2
















 −
+

=
k

k

k

k
kq                                (54) 

 The comparison of two utmost variants of particle 

scattering nearby absorbing wall: solid balls (with finite 

total cross-section) and far-interacted low-angle 

scattered (with infinite total cross-section), – shows 

what is common and what is different. The results on 

particle density n are close each other, but the angle 

distribution behavior of f  at the wall is different: 

discontinuous and continuous. Probably, all intermediate 

variants of scattering are located within these limits. 
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